Using your “My State Study of New Jersey” Packet complete the following lessons:

Week 4

Day 8 and 9: New Jersey Famous Person Project
Choose a famous person from New Jersey
- Include a photo, mark the city where the person is from on the page in your New Jersey packet, include his or her birthdate, early history, and why the person is famous. Check out the Biographical Dictionary on pages 133-136 for assistance.

Day 10: New Jersey writing activity
Choose one of the following to write a minimum of one paragraph:

1. I’m so proud to be a New Jerseyan because....
2. The reasons you should visit my state are...
3. If I was the governor of New Jersey...

https://kids.nationalgeographic.com/search-results/?q=new%20jersey
Grade 3 Social Studies Plans for At Home Learning
State of New Jersey

Using your “My State Study of New Jersey” Packet complete the following lessons:

Day 1: New Jersey – Just the Facts:
Complete first two pages of packet. Use New Jersey book pages 94-95 and 126-133 for guidance or other online resources.

Day 2: Research the State Flag:
Include 3 facts - use page 94 of New Jersey book or other online resources
Color flag with color code in work packet

Day 3: Research the State Seal:
Include 3 facts – use page 95 of New Jersey book
Color seal with color code in work packet

Day 4: State Quarter:
NJ’s role in the Revolution
Pages 46-48

Day 5: State Symbols:
Bird
Flower
Tree
Fish
Mammal
Insect
Find 2 facts about each symbol.
Color with realistic colors
Use Fast Facts located on pages 126-131 of the New Jersey book

Day 6: Read - How did New Jersey Get It’s Name?
Welcome to New Jersey pages 38-39

Day 7: State Capital
Travel Guide Page 106
Find 3-5 facts about Trenton

Day 8 and 9: New Jersey Famous Person Project
Choose a famous person from New Jersey
 - Include a photo, mark the city where the person is from on the page in your New Jersey packet, include his or her birthdate, early history, and why the person is famous.
Check out the Biographical Dictionary on pages 133-136 for assistance.

Day 10: New Jersey writing activity
Choose one of the following to write a minimum of one paragraph:

1. I’m so proud to be a New Jerseyan because….
2. The reasons you should visit my state are…
3. If I was the governor of New Jersey…

https://kids.nationalgeographic.com/search-results/?q=new%20jersey
Grade 3 Science Plans for At Home Learning

Force and Motion

Day 1 Forces
What is a force? Read the article 3 times. Place a checkmark each time you read. Then, use the article to answer the attached questions in complete sentences after highlighting where you found the answers in the article.

Day 2 Pushing
What is a push? Read the article 3 times. Place a checkmark each time you read. Then, use the article to answer the attached questions in complete sentences after highlighting where you found the answers in the article.

Day 3 Pulling
What is a pull? Read the article 3 times. Place a checkmark each time you read. Then, use the article to answer the attached questions in complete sentences after highlighting where you found the answers in the article.

Day 4 Gravity
What is gravity? Read the article 3 times. Place a checkmark each time you read. Then, use the article to answer the attached questions in complete sentences after highlighting where you found the answers in the article.

Day 5 Friction
What is friction? Read the article 3 times. Place a checkmark each time you read. Then, use the article to answer the attached questions in complete sentences after highlighting where you found the answers in the article.

Day 6 Faster and Farther: Moving With Force
Why is it important for athlete’s to understand how force works? Read the article and highlight or underline important information.

Day 7 Faster and Farther: Moving With Force
Use the article to answer the comprehension questions that follow. Make sure you underline or highlight where you found the information in the article.

Day 8 The Power of Magnets
How do magnets use force? Read the article and highlight or underline important information.

Day 9 The Power of Magnets
Use the article to answer the comprehension questions that follow. Make sure you underline or highlight where you found the information in the article.

Day 10 Check for Understanding
Using the information that you have learned about Force and Motion, complete the summary and vocabulary check pages.
REASONS WHY YOU SHOULD VISIT MY HOME STATE

ALL ABOUT MY HOME

MY HOME
Understand Newton's laws of motion. Why is it important for athletes to move with force?

Focus Question

Watch by Michael Sandler

Words to Know

Scientists

forces

law of motion

friction

athletes

Faster and Farther

Movin g with Force
Katie had won an Olympic Gold medal.
Later she finished the race in first place.
Now faster and faster, her lead grew.
The crowd yelled loudly, Katie's arms and legs
swung out fast and quickly took the lead.

Katie dove into the pool.
Who? The race started. Katie and the others.
Each had more chance to
race than Katie. Did she have a chance to race
against seven other women. They had all been in many more
other races.

Katie was racing against one another.
Some together to play sports and race.
The best athletes from around the world.
Summer Olympics happen every four years.
The swimmer was just eleven years old.

Katie Ledecky was just eleven years old.

GO FOR GOLD
Katie Ledecky swims in a race at the 2012 Summer Olympic Games.
and now things move.

and study forces and motion to understand why
and motion in action. Scientists do too. They
are the only ones who watch forces
and many people watch and play sports. Fans and
what makes sports so much fun. That's why so
strong forces and quick movements are part of
Al's sports are filled with motion and forces.

Sir Isaac's Apple

Newtons Laws

Kate holds up a gold medal. She won four Olympic
world records. She also holds gold medals. She was
fourth in 2016. Kate's first Olympic gold
won at the 2016 Olympics.

Moving Fast
They can move. That's the Second Law. They use their arms and legs while swimming. The faster they swim, the more force they use to move their legs. The more force they use, the faster they swim and the more resistant the force of the water.

Swimmers wear light, smooth swimsuits for the swimmers and slows them down. They slip past each other. The objects pull on each other and the happen when two objects slide against the swimmer's. Friction is the force. Right away, forces are pushing back.

That's Newton's First Law of Motion at work. That's a force unless a force changes their motion that start moving, and they will keep moving that push off with their legs. They use a force to at the edge of the pool. To move, they need to. When a race starts, the swimmers stand still together to explain how she can swim so fast.

Kate decided the three laws of motion work in their sports. Think about Water: Working with Water.

Another force pushes back with the same amount of strength. Another force pushes back with the same amount of strength. Third law says that any time there is a force, there is an equal and opposite force on the object that isn't being pushed or pulled.

The faster an object will move; it also says the more moving unless a force makes it stop. The more moving unless a force makes it stop. An object will not move unless a force makes it move. Also, a moving object won't stop. Newton's First Law of Motion says that.
At the throw or the mass of the ball,

differences have to do with either the force
(steeper or faster and some are faster). Of course, every pitch isn’t exactly
balls at least 145 kilometers per hour.
Most great baseball pitchers can throw
That’s the first law of motion in action.

to make the ball move through the air.
pitchers and hitters need a lot of force
kind of thing happens in baseball. Both
swimmers, the faster she will move. The same
Kate Leedey knows that the harder she

135 kilometers per hour (84 mph).

Fast Ball

down the swimmer. The swimmer would not move.

According to Newton’s third law, when a swimmer
pushes back, the force of the water is what
the swimmer’s force. The stronger the water
of force that the swimmer used. The stronger
and ahead. If pushes with the same amount
swimmer. This means the water pushes up
strokes push water down and behind the
arms and legs in swimming. All these
help the swimmer move through the water.

The third law of motion is also at work to
for the other team to get to the ball quickly. a little before it stops. This can make it harder for the batter to hit the ball. The batter will only move the ball when it is not swinging to hit the ball with the same amount of force as the ball is not swinging. The batter just holds the bat out instead.

The hitter might also punt. This means pick up the ball and then the other players have to run and field instead of trying to hit the ball. The hitter will not try as far. If the hitter and the batter run off the field, the batter does not hit the ball. Sometimes, however, a hitter will decide faster and farther. The ball will fly. Then the batter is swinging the bat. The hitter knows the laws of motion to hit the ball. The hitter knows how to work. A hitter also has to apply the force to hit the ball. The hitter knows. The fastest pitch ever recorded was 105 mph.

How fast can a pitcher throw?

THE FASTEST PITCH

with less mass would move faster. A ball with more mass, the pitch would move slower. A ball

A pitcher used the same force to throw a ball with the speed of the pitch would change. If the

If a pitcher used a ball with a different mass, more than 160 kilometers per hour (100 mph) faster. Some pitchers can even throw a ball through with more force, so the ball moves through slower. Those with stronger arms can throw the ball. Pitchers with weaker arms can throw the ball. Pitchers with weaker arms can differ in arm strength and different ways to be different for every pitch. Every pitcher has pitch faster or slower. However, the force can differences in mass are not what makes a way and are the same size. This means that

Most baseballs are made in the same.
Player ahead. These forces create motion to send the ball down the field as fast as possible. When a player catches the ball, he or she moves ahead and around to the ground. Gravity will work against the ball to slow catchers the ball. If no one catches it, action continues. This happens when another player makes the change of direction or stop first. Now says if will keep moving until another. When a player throws a football, Newton's Laws of motion apply.

Some football players are great at keeping the ball in motion. In a 2018 game, Tennessee Titans running back Derrick Henry got the ball and ran down the whole field. After going 99 yards without stopping. It was the first time a player had done this since Tony Dorsett did it for the Dallas Cowboys in 1983.

Football Forces.
more fields of science (p. 5)

work in or study one or

SYN-thetics (people who

an object moves (p. 7)

how forces change the way

a statement that explains

LAW NHV MOW-sheen (n).

law of motion (n).

friction (n).

force (n).

farther (adj.)

(p. 12)

distance from something

FAR-lhnu at a greater

(p. 4)

strength, speed, and skill

activities that require

in sports; games or other

ATH-TEEs, people trained

Glossary

are at work in the world

scientists understand how forces and motion

Game. Meanwhile, knowing about sports helps

ways to study them. Knowing about forces

forces and motion, and scientists have many

and pulling athletes have many ways to use

Flying, athletes moving, and forces pushing

and changing. Sports are filled with balls

work all around us. Things are always moving

We can see Newton’s laws of motion at

Sports and Science

scientists use computers to study how in athletic moves and uses forces.
in the ball

1. What is matter?

2. The first law of motion says:

3. What mass an object has

4. How much an object weighs

5. The swimmer would move

6. Mass

Baseball players need to use a lot of force to make the ball move.

Baseballs are made in the same way, because most baseballs are made of the same materials and have the same size and density.

A different pitch is a way to throw each pitch.

What makes pitches different speeds?

Which of the following helps explain why baseballs are made in the same way?

1. How much gravity an object has

2. How much an object weighs

3. How big an object is

4. How much an object moves

5. How much an object weighs

6. More force it takes to move it

2. The swimmer would move.

A. The swimmer would go slower.

B. The swimmer would go faster.

C. The swimmer would go sideways.

D. The swimmer would move.

E. The swimmer would not move.

F. He helped athletes from around the world.

G. He came up with the laws.

H. He studied force and motion.

I. He wrote a book in 1687 about apples.

J. Why is Sir Isaac Newton famous?

Instructions: Read each question carefully and choose the best answer.

Faster and Farther: Moving With Force

Forces and Motion in Sports
Forces and Motion: Why is it important for athletes to know about forces and motion? Why would one go farther with the same amount of force, which throws a baseball and a bowling ball?

Extended Response: If a pitcher throws a baseball and a bowling ball, the force applied by the pitcher would be the same. However, the mass of the objects is different, with the bowling ball having more mass than the baseball. This means that the bowling ball will travel a shorter distance compared to the baseball. Therefore, the pitcher would need to apply more force to the bowling ball to achieve the same distance as the baseball.

10. What is the main idea of this book?

- The laws of motion in sports are always changing.
- Scientists need to understand the laws of motion to explain forces and motion.
- Athletes are scientists that help sports to study forces and motion.
- Sports are filled with motion.

11. Extended Response: If a pitcher throws a baseball and a bowling ball, which of the following explains why they don't move when they are about to hit batters? What will happen?

- Friction and matter
- Mass and gravity
- Friction and gravity
- Matter and mass

8. Besides players, what works to slow a football down and push it to the ground?

- The ball will move only a little for the ball.
- The hitter will create more motion.
- The hitter will swing the bat as hard as possible.
- The players in the outfield.

7. If a hitter bunts, what will happen?

- The ball will land between the players.
- The ball will move only a little for the ball.
- The hitters will swing the bat as hard as possible.
- The players in the outfield.

Date

Name
Force and Motion

speed
forces
reference motion
direction
velocity acceleration
position
friction
gravity

You can describe the motion of an object by saying it is moving in a straight line or is curved around another object. You can also describe where an object is by its position in relation to another object. When an object changes position, you know it has motion.

Motion can also be described by finding an object's direction and how fast or slow it moves in a certain amount of time. In addition, you can describe the object's speed and direction together. This is called velocity.

There are some ways objects in motion are affected. A force is a push or pull, affect the motion of an object. A force that pulls objects down to Earth is a force that affects things down or can even make them stop.

Did you know acceleration means more than the increase of an object's speed? It also describes an object that is slowing down or changing direction. Since acceleration is a change in velocity, that means...
What does Polly Polar Bear need to win the race?

- Flat track with hills
- Rough track
- Smooth track

Circle the answers, and then explain:

E. A push or a pull towards yourself
D. To move or haul something
C. An object pushing on another
B. The action of moving or
A. To move something away from

Match the words to their definitions:

Force
Motion
Push
Pull
Friction